কোনো বস্তুকে অনুভূমিকের সাথে তির্যকভাবে কোনো স্থানে নিক্ষেপ করা হলে তাকে প্রক্ষেপক বা প্রাস বলে। সমত্বরণে বক্রগতির একটি চমৎকার উদাহরণ হলো নিক্ষিপ্ত বস্তুর গতি তথা প্রক্ষেপক বা প্রাসের গতি। এ গতি হলো বাতাসে তির্যকভাবে নিক্ষিপ্ত বস্তুর দ্বিমাত্রিক গতি। তির্যকভাবে নিক্ষিপ্ত ঢিল, বুলেটের গতি ইত্যাদি প্রাস গতির উদাহরণ। এ সকল ক্ষেত্রে আমরা বাতাসের বাধা উপেক্ষা করি।
ধরা যাক, যে বিন্দু থেকে বস্তুটি নিক্ষেপ করা হয় সেটি প্রসঙ্গ কাঠামোর মূলবিন্দু। প্রসঙ্গ কাঠামোর ধনাত্মক X-অক্ষ ধরা হয় বস্তুটি যে দিক দিয়ে অনুভূমিক দূরত্ব অতিক্রম করে সেদিকে এবং ধনাত্মক Y- অক্ষ উল্লম্ব বরাবর খাড়া উপরের দিকে। সুতরাং বস্তুটির আদি অবস্থানে xo = 0 এবং yo = 0 বস্তুটিকে নিক্ষেপ করা হলে এর উপর কেবল অভিকর্ষজ ত্বরণ খাড়া নিচের দিকে ক্রিয়া করে। সুতরাং এ ক্ষেত্রে বস্তুটির ত্বরণ হয় Y-অক্ষ বরাবর এবং - g যেখানে g = 9.8ms -1
ধরা যাক, t = 0 সময়ে প্রাসটিকে O বিন্দু থেকে vo বেগে অনুভূমিকের সাথে কোণে নিক্ষেপ করা হলো। (চিত্র ৩.৯)। সুতরাং X ও Y অক্ষ বরাবর আদি বেগের উপাংশগুলো হলো যথাক্রমে,
... (3.26)
ধরা যাক, বস্তুটি t সেকেন্ডে p অবস্থানে পৌঁছাল (চিত্র ৩.১০) যেখানে তার বেগ এবং এটি অনুভূমিকের সাথে কোণ উৎপন্ন করে। বেগের অনুভূমিক ও উল্লম্ব উপাংশ যথাক্রমে-
vx=….. (3.27)
[যেহেতু X-অক্ষ বরাবর ত্বরণ শূন্য।
এবং vy = vyo - gt
= -gt…(3.27b)
সুতরাং t সময়ে বা P অবস্থানে প্রাসের বেগ এর মান হলো
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mover accent='true'><mi>v</mi><mo>→</mo></mover></mfenced><mo>=</mo><mi>v</mi><mo>=</mo><msqrt><mrow><msubsup><mi>v</mi><mi>x</mi><mn>2</mn></msubsup><mo>+</mo><msup><mi>v</mi><mfrac><mn>2</mn><mi>y</mi></mfrac></msup></mrow></msqrt></math>
এবং বেগ যেহেতু X-অক্ষ তথা অনুভূমিকের সাথে θ কোণ উৎপন্ন করে, সুতরাং
θ =
আবার, অবস্থান ভেক্টর <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>r</mi><mo>→</mo></mover></math> এর অনুভূমিক ও উল্লম্ব উপাংশ
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>Q</mi><mo>=</mo><mi>x</mi><mo>=</mo><msub><mi>v</mi><mrow><mi>x</mi><mi>o</mi></mrow></msub><mi>t</mi><mo>=</mo><mo>(</mo><msub><mi>v</mi><mi>o</mi></msub><mo> </mo><mi>c</mi><mi>o</mi><mi>s</mi><msub><mi>θ</mi><mi>o</mi></msub><mo>)</mo><mi>t</mi></math>
সুতরাং যে কোনো মুহূর্ত t তে অবস্থান ভেক্টর <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>r</mi><mo>→</mo></mover></math> এর মান হলো,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mover accent='true'><mi>r</mi><mo>→</mo></mover></mfenced><mo>=</mo><mi>r</mi><mo>=</mo><msqrt><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>y</mi><mn>2</mn></msup></mrow></msqrt></math>
এবং অবস্থান ভেক্টর <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>r</mi><mo>→</mo></mover></math> যদি অনুভূমিক তথা X - অক্ষের সাথে θ° কোণ উৎপন্ন করে, তাহলে
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mi>a</mi><mi>n</mi><mi>θ</mi><mo>'</mo><mo> </mo><mo>=</mo><mfrac><mi>x</mi><mi>y</mi></mfrac></math>
ধরা যাক, একটি বস্তু vo আদিবেগে এবং অনুভূমিকের সাথে θo কোণে নিক্ষেপ করা হলো। আদি বেগের অনুভূমিক ও উল্লম্ব উপাংশ যথাক্রমে,
ধরা যাক, নিক্ষেপের সময় পরে প্রাসটির অবস্থান P বিন্দুতে (চিত্র ৩.১)।
ধরা যাক, OQ = x এবং QP=y
তাহলে, OQ = 1 সময়ে অতিক্রান্ত অনুভূমিক
দূরত্ব।
:- x =
আবার, QP=t সময়ে অতিক্রান্ত উল্লম্ব দূরত্ব।
:-
কোনো বস্তুর গতিপথ বা সঞ্চারপথ বা চলরেখ-এর সমীকরণ হচ্ছে যে কোনো মুহূর্তে তার স্থানাঙ্কগুলোর সম্পর্ক নির্দেশক সমীকরণ। (3.31 ) ও (3.32) সমীকরণ থেকে t এর অপেক্ষক হিসেবে স্থানাঙ্ক x ও y পাওয়া যায়। এখন এ সমীকরণ দুটি থেকে t অপসারণ করলে x ও y এর সম্পর্ক পাওয়া যাবে। (3.31 ) সমীকরণ থেকে আমরা t এর জন্য রাশিমালা পাই,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mi>x</mi><mrow><msub><mi>v</mi><mi>o</mi></msub><mo> </mo><mi>c</mi><mi>o</mi><mi>s</mi><msub><mi>θ</mi><mi>ο</mi></msub></mrow></mfrac></math>
t-এর এ মান (3.32) সমীকরণে বসিয়ে আমরা পাই,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfenced><mrow><msub><mi>v</mi><mi>o</mi></msub><mo> </mo><mi>s</mi><mi>i</mi><mi>n</mi><mi>θ</mi><mi>ο</mi></mrow></mfenced><mfrac><mi>x</mi><mrow><msub><mi>v</mi><mi>o</mi></msub><mo> </mo><mi>c</mi><mi>o</mi><mi>s</mi><msub><mi>θ</mi><mi>ο</mi></msub></mrow></mfrac><mo>−</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>g</mi><mfenced><mfrac><mi>x</mi><mrow><msub><mi>v</mi><mi>o</mi></msub><mo> </mo><mi>c</mi><mi>o</mi><mi>s</mi><msub><mi>θ</mi><mi>ο</mi></msub></mrow></mfrac></mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr></mtable></math>
এ সমীকরণ যেকোনো মুহূর্তে x ও y অর্থাৎ অবস্থান ভেক্টরের অনুভূমিক ও উল্লম্ব উপাংশের মধ্যে সম্পর্ক নির্দেশ করে । এ সমীকরণই হচ্ছে প্রাসের গতি পথ বা চল রেখের সমীকরণ। এ সমীকরণে vo, θo এবং g ধ্রুবক বলে tan θo এবং <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>g</mi><mrow><mn>2</mn><mfenced><mrow><msub><mi>v</mi><mi>o</mi></msub><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><msub><mi>θ</mi><mi>ο</mi></msub></mrow></mfenced><msup><mrow/><mn>2</mn></msup></mrow></mfrac></math> ধ্রুবক।
সুতরাং tan θ= b এবং <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>g</mi><mrow><mn>2</mn><mfenced><mrow><msub><mi>v</mi><mi>o</mi></msub><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><msub><mi>θ</mi><mi>ο</mi></msub></mrow></mfenced><msup><mrow/><mn>2</mn></msup></mrow></mfrac></math> = c লিখলে উপরিউক্ত সমীকরণ দাঁড়ায় y = bx - cx2
যা একটি পরাবৃত্তের (parabola) সমীকরণ। অতএব, গ্রাসের গতিপথ বা চলরেখ হচ্ছে একটি পরাবৃত্ত বা প্যারাবোলা।
প্রাসের ক্ষেত্রে তথা নিক্ষিপ্ত বস্তুর ক্ষেত্রে যেকোনো মুহূর্তে তার বেগের উল্লম্ব উপাংশের জন্য (3.19a) সমীকরণ থেকে আমরা পাই,
Vy = Vyo - gt
সর্বাধিক উচ্চতায় বস্তুর বেগের উল্লম্ব উপাংশ শূন্য হয়, অর্থাৎ vy = 0। এ শর্ত উপরিউক্ত সমীকরণে ব্যবহার করে t এর যে মান tm পাওয়া যায়, তাই হবে সর্বাধিক উচ্চতার ওঠার সময়। সুতরাং এ সমীকরণ থেকে
সুতরাং দেখা যায় যে, সর্বাধিক উচ্চতায় ওঠার সময় tm বস্তুর আদি বেগের উল্লাস্থ উপাংশের অর্থাৎ vosin θoএর সমানুপাতিক ।
(3.22a) সমীকরণ থেকে আমরা জানি, প্রাসের ক্ষেত্রে তথা নিক্ষিপ্ত বস্তুর ক্ষেত্রে যেকোনো মুহূর্তে তার বেগের উল্লখ উপাংশ এবং সরণের উল্লম্ব উপাংশের মধ্যে সম্পর্ক হলো,
সর্বাধিক উচ্চতায় বস্তুর বেগের উল্লম্ব উপাংশ শূন্য হয়, অর্থাৎ vy= 0 । এ শর্ত উপরিউক্ত সমীকরণে ব্যবহার করে । এর যে মান পাওয়া যাবে তাই হবে ym বা hm (চিত্র : ৩১২)। সুতরাং উক্ত সমীকরণ থেকে
যেহেতু কোনো স্থানে g একটি ধ্রুব রাশি, অতএব
সুতরাং দেখা যায়, একটি প্রাস সর্বাধিক যে উচ্চতায় উঠবে তা বস্তুর আদি বেগের উল্লম্ব উপাংশের অর্থাৎ এর বর্গের সমানুপাতিক।
(3.21a) সমীকরণ থেকে আমরা জানি, প্রাস বা নিক্ষিপ্ত বস্তুর ক্ষেত্রে তার অবস্থান ভেক্টরের উল্লম্ব উপাংশ এবং সময়ের মধ্যে সম্পর্ক হচ্ছে
নিক্ষিপ্ত বস্তুর বা প্রাসের নিক্ষেপের পর আবার ভূপৃষ্ঠে ফিরে আসতে যে সময় লাগে তাকে উড্ডয়নকাল বলে। বস্তু ভূ- পৃষ্ঠে ফিরে আসলে y = 0 হয়। এ শর্ত উপরিউক্ত সমীকরণে বসালে t এর যে মান পাওয়া যায় তাই হবে উড্ডয়ন কাল । উড্ডয়ন কাল T হলে এ সমীকরণ থেকে আমরা পাই,
যেহেতু T = 0 ভূ-পৃষ্ঠ থেকে যে মুহূর্তে বস্তুটি নিক্ষেপ করা হচ্ছে তাই নির্দেশ করে,
সুতরাং দেখা যায় যে, উড্ডয়ন কাল বস্তুর আদি বেগের উল্লম্ব উপাংশের অর্থাৎ, এর সমানুপাতিক
আরও দেখুন...